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980, Japan 
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Abstract. The regular king model with 1 bonds of J > 0 and I bonds of - J  on the Cayley 
tree with coordination number 21 is considered under the uniform external field when 
I 2  3. The effective fields in the system satisfy nonlinear coupled recursive equations. At 
T = 0, these become piecewise linear equations and arithmetic furcations of periodic points 
for the recursive equations are found as a function of the external field. 

The thermodynamic behaviour of the Ising model at the central part of the Cayley 
tree is the same as the one of the Ising model on the Bethe lattice (Morita and 
Horiguchi 1975). The Bethe lattice is defined by the lattice on which the Bethe 
approximation is exact for the Ising model. The regular Ising model with ferromagnetic 
nearest-neighbour (NN) and antiferromagnetic next-nearest-neighbour (NNN) interac- 
tions on the Cayley tree with coordination number three has been studied, paying 
special attention to the properties at the central site of the tree (Vannimenus 1981, 
Inawashiro and Thompson 1982). Vannimenus (1981) has obtained the modulated 
phase for the model in which the NNN interactions between sites on the same shell 
are vacant. Inawashiro and Thompson (1982) have obtained a chaotic, glass-like 
behaviour for the model in which all of the NNN interactions participate. In the models 
by Vannimenus and by Inawashiro and Thompson, there exists frustration due to the 
competing NN and NNN interactions. In this sense, the situation is the same as the 
ANNNI model (Selke and Fisher 1979, Fisher and Selke 1980, Bak and von Boehm 
1980, Yokoi et af 1981). 

On the other hand, Morita (1983) has studied a regular Ising model with only 
nearest-neighbour interactions under a uniform external field on the Cayley tree with 
the coordination number three. In the model, there are two J > 0 bonds and one - J  
bond from each site to its nearest-neighbour sites except those on the surface. He 
obtained the spin-glass and the spin-crystal phases in the temperature-field plane. In 
the model, frustration exists due to the competition between the exchange interaction 
and the applied external field. This is the point essentially different from the models 
studied by others. In the present paper, we investigate the ground-state properties 
of a model modified from it, focusing on the furcation of the attractor of the recursive 
equations for the effective fields. 

We consider the Cayley tree which has a central site 0 and N shells surrounding 
it. The coordination number is denoted by 2, which is equal to or greater than three, 
We label the shells in order from the outermost to the innermost; then the central 
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site is on the Nth  shell. The sites other than those on the 0th shell (referred to as 
the surface of the Cayley tree) have z nearest neighbours and those on the surface 
have only one nearest neighbour. There is a spin on each site. Each spin, except on 
the surface, interacts with I+ nearest-neighbour spins b y J  > 0 and I -  nearest-neighbour 
spins by - J ,  where I ,  + 1- = z 3 3 .  We introduce two types of effective fields hs” or 
hj-’ to a site on the sth shell from the outer branch, according as the interaction 
between them is J or -J .  The equations determining the effective fields h:’ except 
for s = 0 are given as follows: 

h ?’ = p -’ tanh-’(tanh p J  tanh@ [h + (I, - 1 )h I”1 + 1-h ::)I I}), 
hj-’ = - @ - ’  tanh-’(tanhpJ tanh@[h +l+hcJ1  +(I-- l)h::)l]}), 

( 1 )  

where p = l / k T  as usual. h is the uniformly applied external field. At the surface 
s = 0, we assume hE’ = 0. This set of equations is a set of nonlinear coupled difference 
equations. In the temperature-field plane, there are regions of periodic points, of 
limit periodic points and of non-periodic points for sets of values ( h r ’ ,  hB-’) of the 
recurrence equations ( 1 ) .  At a point in a region of non-periodic points, we have an 
attractor which is a closed curve. Correlation functions of the effective fields seem 
t a  be almost periodic on the attractor. Detailed discussions for finite temperatures 
will be given elsewhere. 

In the present paper, we concentrate our attention on the properties at absolute 
zero temperature. Furthermore, we restrict the number of J bonds to be equal to 
that of - J bonds and greater than or equal to three: 1 = 1, = 1- 2 3. At T = 0, equation 
( 1 )  is simply expressed by the mapping Cp from R into the set { x ,  y /Ix I s J,  I y I c J } :  

hI” =l{lh +(l-l)h:?l +lhL?’l *Jl- lh+(l- l )h:?l  +Ihj’f)l TJJ}. ( 2 )  

We denote this as follows 

Here Cp is continuous and piecewise linear. When h < 2 J ,  we have only an unstable 
fixed point (0, - h / l ) .  When h 3 2 J ,  we have a stable fixed point ( J ,  - J ) ,  and an 
additional unstable fixed point (0, - h / l )  if U 5 h 3 2J. (When 1 = 2 and h = 2J, we 
also have a line of stable fixed points which is expressed by the set { x ,  y l 0 s x  =zJ, 
y = - J } . )  When h 2 2 4  every point in R 2  except unstable fixed points is attracted 
to the stable fixed point ( J ,  - J )  by the mapping (D. Hence we investigate in detail 
only the case of h < 2J. 

We look at the following domains: 

It can easily be seen that every point ( x ,  y )  in R2\E5 is mapped to a point in F at 
most within five operations of the mapping. Every point in E5 is mapped to a point 
of E and then possibly to a point in Es itself. When the points (hl:’,, are in E5 
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19, 
1 0  

0 5--  

I I 0 

fori = 0, 1,  2 ,  . . . , 2n - 1, we have the following relations: 

h s + Z n - l  ( + I  = ( 1  - 2 1 ) f l - 1 { ( l - 1 ) h y  +l(hj- '+h/ l )} ,  

hi;kfl-1 = - ( 1 - 2 f ) f l - 1 { l h : ) + ( z -  l )@-)+h/ l ) } -h / f ,  

h:;)2fl =(1-2 l )" (h ' , - '+h/ l ) -h / l .  

(7) 

(+) 
s + 2 n  = ( 1  - 2 f ) " h Y ) ,  

(8) 

Thus after 2N iterations, any point ( h r ) ,  hi-))  in E5 which satisfies Ihy'I >J/(2l- l)N+l 
and lh!-) + h / l l >  ( J  + h/1 ) / (21 -  l)N+l is mapped to a point outside Es.  In this way, 

a 

-. . . . . . . . . . . . . . . . - - . 
1 
I 

I 

(c l  Id) 

Figure 1. The one-dimensional mapping cpk and the processes of furcations of periodic 
points. The ordinate is c p k ( x ) / J  and the abscissa is x / J .  ( a )  is for h / J  = 1.1, ( b )  for 
h / J  = 1.255, (c) for h / J  = 1.7 and ( d )  for h / J  = 1.728. From ( a )  to (c), the furcation 
from period 4 to period 5 is realised. From ( a )  to ( b ) ,  the furcation to period 9 in between 
periods 4 and 5 is realised. From (c )  to (d) ,  the furcation to period 11 in between periods 
5 and 6 is realised. 
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i I 

every point except the unstable fixed point (0, - h / l )  passes through a point in F and 
then is mapped to a point in the set { x ,  y (Ix I S J,  y = - J ) .  

The above fact suggests that we should consider a projection of the two-dimensional 
mapping @ to the one-dimensional mapping (Pk defined by 

h ::\ = (Pk ( h  : + I ) .  

(hjyk,  hj;: = -J )=Qk(hb+’ ,  hj-’ = - J )  

(9) 
Here equation (9) denotes the following equation: 

(10)  
where for k # 1 we assume that hi;),,, # - J for 1 S m < k .  In equation (9), the subscript 
k of (Pk is also a function of h r ’ .  For I = 3 it is expressed as follows: for h / J  s % 

Q ~ ( x ) =  - 3 J + h + 2 ~ ,  J - $ h < x S J ,  

Q ~ ( x )  = J ,  s J - g h < x s J - $ h ,  

Q ~ ( x ) =  -4OJ+ 16h + 8 1 ~ ,  
13 5 ( 1 1 )  
Z J - v h  < X  S g J - g h ,  

~ 3 ( x ) = J ,  -J=zx<uJ-” ‘27 27hl 

and for hlJ  3 

Q ~ ( x )  = -3J + h + 2x, 

Q ~ ( x )  = J ,  

Q ~ ( x ) =  - 4 J - 2 h  + 4 5 ~ ,  

~ 3 ( x ) = J ,  - J S x s & J + & h .  

J - $ h  < X  S J ,  
$ J + & h < x C J - J h ,  1 

(12)  
-J+&h < x  S$iJ+&h, 

The function Q k  is also piecewise linear. ( p k  is given in figure 1 by bold full lines 
labelled by cpl, ( p 3  and (p4 for h / J  = 1.1, 1.255, 1.7 and 1.728. The processes of the 
mapping are shown by the broken lines. Suppose that the broken line starting from 
the point ( J ,  J )  visits P I ,  cp3 and (p4 at V I ,  v 3  and v4 times, respectively, before it 
comes back to the same point; then the period is given by v l+3v3+4v4.  We have 
period 4,  9, 5 and 11 in figures l ( a ) ,  ( b ) ,  (c) and (d ) ,  respectively. The arithmetic 
furcations of periods are explained in the following way. The series of periods j = 4, 

I 7 
/ lob 

I 
I 

3 
1 0  15 2 0  

5 1  

/ lob 

I 
I 

3 
1 0  15 2 0  

5 1  

h lJ  

Figure 2. The regions for the main series of periods j = 4, 5 ,  . . . in the h-1 plane for 1 a 3. 
In between periods j and j + 1, there exist regions with periods jm + ( j  + l)n for m, n E {1, 
2, . . .}. 
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5, 6,. . . is called the main series and is obtained by increasing the number of times 
of visiting cpl  before (p3 or (p4 or by switching from c p 3  to cp4 after ql, and the periods 
in between successive main periods are obtained by visiting the tongue part of (p4. 

We performed numerical calculations and actually found arithmetic furcations of 
the periodic points as a function of the external field. The periods j m  + ( j  + l)n appear 
in decreasing order of the value ( m  + n )/[jm + ( j  + l)n], where m and n take on (0, 1, 

Table 1. The critical values of h at which the period changes are listed within ten places 
of decimals for those occurring in between period 4 and period 10. 

Field h / J  Period ( m + n ) / [ j m + ( i + l h I  

0-1.25 
1.250 000 0001 
1.250 000 0002-1.250 000 0145 
1.250 000 0146-1.250 001 1760 
1.250 001 1761-1.250 095 2551 
1.250 095 2552-1.250 095 2622 
1.250 095 2623-1.257 685 0094 
1.257 685 0095-1.257 685 0130 
1.257 685 0131-1.257 731 6689 
1.257 731 6690-1.257 731 9569 
1.257 731 9570-1.257 731 9587 
1.257 731 9588-1.727 272 7272 
1.727 272 7273 
1.727 272 7274-1.727 272 7300 
1.727 272 7301-1.727 272 9795 
1.727 272 9796-1.727 295 4285 
1.727 295 4286-1.727 295 4299 
1.727 295 4300-1.729 312 0638 
1.729 312 0639-1.729 312 0644 
1.729 312 0645-1.729 323 2458 
1.729 323 2459-1.729 323 3079 
1.729 323 3080-1.729 323 3082 
1.729 323 3083-1.884615 3846 
1.884 615 3847-1.884 615 3959 
1.884 615 3960-1.884 617 4277 
1.884 617 4278-1.884 983 0076 
1.884 983 0077-1.884 984 0227 
1.884 984 0228-1.884 984 0255 
1.884 984 0256-1.946 428 5714 
1.946 428 5715-1.946 428 5720 
1.946 428 5721-1.946 428 7922 
1.946 428 7923-1.946 508 0621 
1.946 508 0622-1.946 508 1722 
1.946 508 1723 
1.946 508 1724-1.974 137 9310 
1.974 137 9311-1.974 137 9568 
1.974 137 9569-1.974 1564838 
1.974 156 4839-1.974 156 4967 
1.974 156 4968-1.987 288 1355 
1.987 288 1356-1.987 288 1387 
1.987 288 1388-1.987 292 6211 
1.987 292 6212-1.987 292 6226 
1.987 292 6227-1.993 697 4789 

4 0.25 
25 0.24 
21 0.238 
17 0.235 
13 0.231 
22 0.227 
9 0.222 

23 0.217 
14 0.214 
19 0.211 
24 0.208 

5 0.2 
31 0.194 
26 0.192 
21 0.190 
16 0.188 
27 0.185 
11 0.182 
28 0.179 
17 0.176 
23 0.174 
29 0.172 

6 0.167 
25 0.16 
19 0.158 
13 0.154 
20 0.15 
27 0.148 

7 0.143 
29 0.138 
22 0.136 
15 0.133 
23 0.130 
31 0.129 
8 0.125 

25 0.12 
17 0.118 
26 0.115 
9 0.111 

28 0.107 
19 0.105 
29 0.103 
10 0.1 
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2 , .  , .}, have no common divisor other than one and are not zero at the same time, 
and j = 4, 5 ,  6 ,  , , . , In figure 2, we show the main periods j in the h - 1 plane up to 
j = 9 where 1 is assumed to be real. Many periods exist in between the main periods 
but we cannot depict them since the regions for them are so narrow. We give some 
of them numerically in table 1 ,  where we list the critical values of h, at which the 
period changes, within ten places of decimals for I = 3 .  The values ( m  + n ) / [ j m  + v ',1);]2f;tlypep~ p y i t y  p y s _ p f p . m a l s  are as follows: 8, &, &, E, 1 

1 - 
34, 23, 35, 12, 37, 25, 13, 27, 14, 29, 15, 31, 16, 339 173 359 18, 19, * . . 9 3. Higher periodic points 
were also found when we took more places of decimals of the value of h. The 
behaviours of values ( m  + n ) / [ j m  + ( j  + l ) n ]  as a function of h, and also as a function 
of I, show a devil's staircase. Similar behaviours have been found for a number of 
different systems (Aubrey 1978, Bak 1982, Kaneko 1983). 

Properties of the Ising model at the central part of the Cayley tree with I = 3 (i.e. 
coordination number 6 )  considered here are regarded as those by the Bethe approxima- 
tion of the Ising model on the triangular lattice in which each lattice site has three 
bonds of J and three bonds of - J  as, for example, shown in figure 3 and we expect 
that some corresponding properties may appear in that system. In the case of I = 2 
and also of I, # I-, the situation is more complicated and we will discuss it elsewhere. 

I \ I  

Figure 3. An king model on the triangular lattice. The full lines denote ferromagnetic 
bonds J and the broken lines antiferromagnetic bonds - J .  
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